13,839 research outputs found

    High-velocity gas towards the LMC resides in the Milky Way halo

    Full text link
    To explore the origin of high-velocity gas in the direction of the Large Magellanic Cloud (LMC) we analyze absorption lines in the ultraviolet spectrum of a Galactic halo star that is located in front of the LMC at d=9.2 kpc distance. We study the velocity-component structure of low and intermediate metal ions in the spectrum of RXJ0439.8-6809, as obtained with the Cosmic Origins Spectrograph (COS) onboard HST, and measure equivalent widths and column densities for these ions. We supplement our COS data with a Far-Ultraviolet Spectroscopic Explorer spectrum of the nearby LMC star Sk-69 59 and with HI 21cm data from the Leiden-Argentina-Bonn (LAB) survey. Metal absorption towards RXJ0439.8-6809 is unambiguously detected in three different velocity components near v_LSR=0,+60, and +150 km/s. The presence of absorption proves that all three gas components are situated in front of the star, thus being located in the disk and inner halo of the Milky Way. For the high-velocity cloud (HVC) at v_LSR=+150 km/s we derive an oxygen abundance of [O/H]=-0.63 (~0.2 solar) from the neighbouring Sk-69 59 sightline, in accordance with previous abundance measurements for this HVC. From the observed kinematics we infer that the HVC hardly participates in the Galactic rotation. Our study shows that the HVC towards the LMC represents a Milky Way halo cloud that traces low-column density gas with relatively low metallicity. It rules out scenarios in which the HVC represents material close to the LMC that stems from a LMC outflow.Comment: 4 pages, 3 figures; submitted to A&A Letter

    Further search for a neutral boson with a mass around 9 MeV/c2

    Get PDF
    Two dedicated experiments on internal pair conversion (IPC) of isoscalar M1 transitions were carried out in order to test a 9 MeV/c2 X-boson scenario. In the 7Li(p,e+e-)8Be reaction at 1.1 MeV proton energy to the predominantly T=0 level at 18.15 MeV, a significant deviation from IPC was observed at large pair correlation angles. In the 11B(d,n e+e-)12C reaction at 1.6 MeV, leading to the 12.71 MeV 1+ level with pure T=0 character, an anomaly was observed at 9 MeV/c2. The compatibility of the results with the scenario is discussed.Comment: 12 pages, 5 figures, 2 table

    Stellar Associations and their Field East of LMC 4 in the Large Magellanic Cloud

    Get PDF
    We report about the stellar content and the luminosity and mass functions of three stellar associations and their field located on the north-east edge of the super-bubble LMC 4 in the Large Magellanic Cloud.Comment: To be appeared in the meeting Proceedings of ``Modes of Star Formation and the Origin of Field Populations'', Heidelberg, Germany, October 2000; to be published in the ASP Conference Series, edited by E. K. Grebel and W. Brandne

    Chandra Detection of X-ray Absorption Associated with a Damped Lyman Alpha System

    Full text link
    We have observed three quasars, PKS 1127-145, Q 1331+171 and Q0054+144, with the ACIS-S aboard the Chandra X-ray Observatory, in order to measure soft X-ray absorption associated with intervening 21-cm and damped Lyα\alpha absorbers. For PKS 1127-145, we detect absorption which, if associated with an intervening z_{abs}=0.312 absorber, implies a metallicity of 23% solar. If the absorption is not at z_{abs}=0.312, then the metallicity is still constrained to be less than 23% solar. The advantage of the X-ray measurement is that the derived metallicity is insensitive to ionization, inclusion of an atom in a molecule, or depletion onto grains. The X-ray absorption is mostly due to oxygen, and is consistent with the oxygen abundance of 30% solar derived from optical nebular emission lines in a foreground galaxy at the redshift of the absorber. For Q1331+171 and Q 0054+144, only upper limits were obtained, although the exposure times were intentionally short, since for these two objects we were interested primarily in measuring flux levels to plan for future observations. The imaging results are presented in a companion paper.Comment: 23 pages, 6 figures, accepted for publication in the Astrophysical Journa

    ORFEUS II echelle spectra: Absorption by H_2 in the LMC

    Get PDF
    We present the first detection of molecular hydrogen (H_2) UV absorption profiles on the line of sight to the LMC. The star LH 10:3120 in the LMC was measured with the ORFEUS telescope and the Tuebingen echelle spectrograph during the space shuttle mission of Nov./Dec. 1996. 16 absorption lines from the Lyman band are used to derive the column densities of H_2 for the lowest 5 rotational states in the LMC gas. For these states we find a total column density of N(H_2)=6.6 x 10^18$ cm^-2 on this individual line of sight. We obtain equivalent excitation temperatures of T < 50 K for the rotational ground state and T = 470 K for 0 < J < 6 by fitting the population densities of the rotational states to theoretical Boltzmann distributions. We conclude that UV pumping dominates the population of the higher rotational levels, as known from the H_2 gas in the Milky Way. (Research supported in part by the DARA)Comment: Astronomy & Astrophysics, Letter, in pres
    • …
    corecore